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Abstract: In a sequencing situation, each agent owns exactly some jobs which need to be processed on some 

machines. Each job has a completion time, and the agent need to wait until his jobs are all finished. The agent 

occurs a cost which is the weighted completion time of his last job. The agents are free to discuss the final 

processing order. We propose a cost allocation rule being dependent on the processing order, and show how it 

works for two sequencing situations. 
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INTRODUCTION 

The sequencing situation raised from production 

environment is introduced in 1989 [Curiel et al. 1989]. 

In a sequencing situation there are some agents before 

some machines, each agent owns jobs that need to be 

processed with given processing times, and its staying 

in the system occurs a cost per unit time, which is 

called the weight. The agents negotiate to decide the 

final processing order, to make every agent satisfied 

transfer payment is allowed, which means one can 

pay those processed later some money to be processed 

earlier. A final processing order and the related 

transfer payment together solved the sequencing 

situation. The single machine sequencing situation has 

been fully studied, and different kinds of cost 

allocation are proposed [Curiel et al. 1989, Curiel et al. 

1993, Curiel et al. 1994]. Latter single machine 

sequencing situation with ready time and due date are 

studied [Hamers et al. 1995, Borm et al. 2002]. 

Hamers also discussed the sequencing situation with 

chains precedence [Hamers et al. 2005], which means 

jobs are partitioned in several chains, a job can start to 

process only if jobs in the same chain before it have 

all finished. 

We focus on a cost allocation rule called EWCS 

rule, which is generalized in the classic single 

machine sequencing situation, and is developed to 

solve two sequencing situations, one is the single 

machine sequencing situation with precedence 

constrains, the other is the two-machine sequencing 

situation. For single machine with precedence 

constraint, there is precedence constraint P between 

the jobs, and for any job i and j  if ( , )i j P  then 

job i  can only be processed after job j  is finished. 

Chains precedence mentioned before is a special case 

for precedence constraints. In a two-machine 

sequencing situation each agent has exactly two jobs 

need to be processed on machine 1 and machine 2, the 

agent need to wait until his last job is finished, thus 

his cost is weighted completion time of his last job.  

COST ALLOCATION RULE 

EWCS rule 

In a sequencing situation, the grand coalition 

containing all agents is denoted by N , the jobs’ 

processing time is p , while the weight is w . Let 

 be a processing order, (i)  be the job on 

position i . Let the jobs preceding agent i be ( , )P i , 

and jobs after agent i be ( , )F i . The completion 

time of agent i under processing order is ( )iC  , 

thus we have
( ,i)

( )=i j ij P
C p p





 . Then the 

total cost is ( )i ii N
wC 

 , and a cost allocation 

rule must allocates exactly this cost among agents. 

Thus the rule satisfies efficiency. There may be many 

feasible processing orders for a sequencing situation, 

the optimal one makes the total cost minimized. 

Shapley value is a popular cost allocation solution in 

many problems, it is first introduced by Shapley 

[Shapley 1953]. The single machine sequencing 

situation without initial order is studied [Mishra and 

Rangarajan 2007], and a polynomial time formulation 

of the Shapley value for agent i is given: 

* *( , ) ( , )

1 1

2 2
i i i i j l i

j P i l F i

SV w p w p w p
  

     

where 
*  is an optimal processing order.  
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The EWCS rule is inspired by this formulation. For 

a given processing order   we decide a cost 

allocation according to it. The rule allocates to each 

agent his own processing cost, and half the waiting 

cost caused by his job for jobs after him, and also half 

the cost he suffered from those preceding him. With 

this meaning we call it EWCS (Equal waiting cost 

split) rule.  And agent i ’s cost under processing order 

  is: 

( , ) ( , )

1 1
( )

2 2
i i i i j l i

j P i l F i

f w p w p w p
 


 

     

It is easy to verify that the EWCS rule satisfies 

efficiency. 

Sequencing Situation with Precedence Constriant 

The single machine sequencing situation with 

precedence constraints with no initial order is denoted 

by  , , ,N P p w , where P  is a set of 2-tuples 

representing the precedence constraints, and 

( , )i j P  implies that job j  can be started only 

after job i  has been finished. The precedence 

constraints can also be visually described by an 

acyclic directed graph. The specific precedence 

constraints of chains can be pictorially described as 

several parallel directed chains. 

The processing orders satisfying the precedence 

constraints are called feasible orders, and we denote 

the set of feasible order as ( )A N . Finding the 

optimal one among the feasible order may not be done 

in polynomial time, and in practical we can decide the 

final order by heuristic algorithm. For the case with 

chains precedence, the optimal processing order can 

be figured out: first cutting from each chain the head 

with maximum ratio of weight to processing time 

until all jobs are partitioned, and let jobs in a head be 

processed together, then order the partitioned job-sets 

in decreasing ratio of weight to processing time. 

We generalize the EWCS rule to get the payment 

of each agent of sequencing situation  , , ,N P p w :  

1) if ( , )j i P then i takes all the waiting cost 

caused by waiting for j  since in any feasible 

order i  is behind j ; 

2) if ( , )i j P then j takes all the waiting cost 

caused by waiting for i ; 

3) if ( , )j i P  and ( , )i j P  thus i  and j  share 

the waiting cost equally. 

For any feasible processing order ( )A N  , we 

define value j  as 

( , ),( , ) ( , ),( , )

( , ) ( , )

1
( ) ( )

2
i i j j i

j P i j i P j F i i j P

i j j i i i

j i P i j P

q w p w p

w p w p w p

 


   

 

 

  

 

 

 

where P  is the precedence constraints. 

 It is easy to verify that ( )ii N
q 

  is the total 

cost under processing order , in other words we 

have 

 ( )= ( )i ii N i N
q C 

   .  

The modified EWCS rule applied to single machine 

sequencing situation satisfies efficiency.    

Two-machine Sequencing Situation 

The two-machine sequencing situation is proposed 

by Calleja et al. [Calleja et al. 2002], and they showed 

the balancedness of the related sequencing game 

when all jobs have uniform processing time and 

weight. A two-machine sequencing situation is 

denoted as  , , , ),(M N w p q , where M contains 

two machines, and N  is the agent set, w  is the 

weight of agent. And each agent owns exactly two 

jobs that need to be processed on the two machines 

respectively. We use i  to denote agent i 's two jobs, 

i.e., agent i  owns a job i  with processing time ip  

which need to be processed on machine 1, and also 

another job i with processing time iq  which need to 

be processed on machine 2. Let ( , )   be a 

processing order, then   is the order on machine 1 

and  is the order on machine 2.  If =  , ( , )   is 

called a permutation order. We denote the completion 

time of agent i  on machine 1 and machine 2 as 
1( )iC   and 

2 ( )iC  respectively. The total cost 

is
1 2max( ( ), ( ))i i ii N

w C C 


 . 

For two-machine sequencing situation, the optimal 

processing orders have the following properties: 

(1) There must be one optimal processing order being 

a permutation one; 

(2) If p q , then all optimal processing orders are 

permutation ones. 

The general problem is difficult to find an optimal 

processing order, we can search from the permutation 

orders and choose a final order. There is a special case 

whose optimal processing order is easy to figure out: 

each agent’s job with larger processing time is on 

machine 1, and the case on machine 2 is similar. In 

that case   
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1 2

1 2 1 2

max( ( ), ( ))

1
= ( ( )+ ( )-| ( )- ( )|)

2

i i ii N

i i i i ii N

w C C

w C C C C

 

   












 

Thus if we let jobs on machine 1 in decreasing order 

of their ratio i iw p (this order is optimal in 

minimizing the total weighted completion time on 

machine 1 [Smith 1956] ), and jobs on machine 2 

follow the order on machine 1, then we have  
1 2

1

( ( ) ( ))

= min ( )

i i ii N

i ii N

w C C

w C

 







 






 

Which means the total cost is minimized, and the 

optimal processing order is found. For the general 

problem, there is a special order: the jobs on both 

machines are in their decreasing order of the ratio of 

weight to processing time. We denote the order as 

( , )  , then it has a worst-case ratio less than 2, 

since the total cost won’t be larger than 
1 2( ( ) ( ))i i ii N

w C C 


  , 

 and meanwhile it won’t be less than   

    
1 21

( ( ) ( ))
2

i i ii N
w C C 


  . 

We focus on the cost allocation problem of the 

general problem in the following part. And we choose 

the final order a permutation one denoted by ( , )  . 

Let agents be finished on machine 1 (the job with 

larger completion time is on machine 1) be 1S , and 

jobs finished on machine 2 be 2S , then 1 2 =S S N . 

We generate the EWCS cost allocation rule to the 

general case: let each agent take his own job's 

processing cost (his last finished job’s processing 

cost), and let the waiting cost be allocated between 

those agents preceding him and himself, he also share 

the waiting cost of jobs delayed by him. For agent i , 

let 

1 2( , ) S ( , )

1

( , )

1
( , ) (

2

+ )+ ,

i l i l i

l F i l F i S

i j i i

j P i

f w p w q

w p w p i S

 



 
   



 



 


 

1 2( , ) S ( , )

2

( , )

1
( , ) (

2

  )+ ,

i l i l i

l F i l F i S

i j i i

j P i

f w p w q

w q w q i S

 



 
   



 

 

 


 

Under this rule, an agent's waiting cost is his last 

finished job's waiting cost, and he share the waiting 

cost with those who caused waiting equally. The rule 

also satisfies efficiency. 

We give an instance of three agents to explain how 

the rule works. Suppose the optimal processing order 

which is also a permutation order, and ={1,2,3}  

on both machines, the total cost is 
1 2 1

1 1 2 2 3 3

1 1 2 1 2 3 1 2 3

( ) ( ) ( )

( ) ( )

w C w C w C

w p w q q w p p p

   

     
  

For agent 1, 2, 3, their payments are respectively 
1 1

1 1 1 2 1 3 12 2

1 1
2 2 2 2 1 3 22 2

1 1
3 3 3 3 1 3 22 2

( , ) +

( , ) +

( , ) + .

f w p w q w p

f w q w q w p

f w p w p w p

 

 

 

 

 

 

，

， 

CONCLUSION 

We first introduced the EWCS rule for single 

machine sequencing situation without initial order. 

The rule assigns to each agent a cost which varies 

over different processing orders. When there are 

precedence constraints, the EWCS rule is modified 

according to the precedence constraints. For two-

machine sequencing situation, the rule is generalized 

according to the final order. For both sequencing 

situations discussed, the generalized cost allocation 

rule is practical. 
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