
Journal of Applied Science and Engineering Innovation, Vol.2 No.8, 2015, pp.302-304

ISSN (Print): 2331-9062

ISSN (Online): 2331-9070

Corresponding Author: Shanshan Liu, School of Science, East China University of Science and Technology, Shanghai

200237, China.

302

A Cost Allocation Rule in Sequencing Situation

Shanshan Liu

Department of Mathematics, School of Science, East China University of Science and Technology,

Shanghai, 200237, China

Abstract: In a sequencing situation, each agent owns exactly some jobs which need to be processed on some

machines. Each job has a completion time, and the agent need to wait until his jobs are all finished. The agent

occurs a cost which is the weighted completion time of his last job. The agents are free to discuss the final

processing order. We propose a cost allocation rule being dependent on the processing order, and show how it

works for two sequencing situations.

Keywords: scheduling; sequencing situation; cooperative game; cost allocation

INTRODUCTION

The sequencing situation raised from production

environment is introduced in 1989 [Curiel et al. 1989].

In a sequencing situation there are some agents before

some machines, each agent owns jobs that need to be

processed with given processing times, and its staying

in the system occurs a cost per unit time, which is

called the weight. The agents negotiate to decide the

final processing order, to make every agent satisfied

transfer payment is allowed, which means one can

pay those processed later some money to be processed

earlier. A final processing order and the related

transfer payment together solved the sequencing

situation. The single machine sequencing situation has

been fully studied, and different kinds of cost

allocation are proposed [Curiel et al. 1989, Curiel et al.

1993, Curiel et al. 1994]. Latter single machine

sequencing situation with ready time and due date are

studied [Hamers et al. 1995, Borm et al. 2002].

Hamers also discussed the sequencing situation with

chains precedence [Hamers et al. 2005], which means

jobs are partitioned in several chains, a job can start to

process only if jobs in the same chain before it have

all finished.

We focus on a cost allocation rule called EWCS

rule, which is generalized in the classic single

machine sequencing situation, and is developed to

solve two sequencing situations, one is the single

machine sequencing situation with precedence

constrains, the other is the two-machine sequencing

situation. For single machine with precedence

constraint, there is precedence constraint P between

the jobs, and for any job i and j if (,)i j P then

job i can only be processed after job j is finished.

Chains precedence mentioned before is a special case

for precedence constraints. In a two-machine

sequencing situation each agent has exactly two jobs

need to be processed on machine 1 and machine 2, the

agent need to wait until his last job is finished, thus

his cost is weighted completion time of his last job.

COST ALLOCATION RULE

EWCS rule

In a sequencing situation, the grand coalition

containing all agents is denoted by N , the jobs’

processing time is p , while the weight is w . Let

 be a processing order, (i) be the job on

position i . Let the jobs preceding agent i be (,)P i ,

and jobs after agent i be (,)F i . The completion

time of agent i under processing order is ()iC  ,

thus we have
(,i)

()=i j ij P
C p p





 . Then the

total cost is ()i ii N
wC 

 , and a cost allocation

rule must allocates exactly this cost among agents.

Thus the rule satisfies efficiency. There may be many

feasible processing orders for a sequencing situation,

the optimal one makes the total cost minimized.

Shapley value is a popular cost allocation solution in

many problems, it is first introduced by Shapley

[Shapley 1953]. The single machine sequencing

situation without initial order is studied [Mishra and

Rangarajan 2007], and a polynomial time formulation

of the Shapley value for agent i is given:

* *(,) (,)

1 1

2 2
i i i i j l i

j P i l F i

SV w p w p w p
  

   

where
* is an optimal processing order.

J. of Appl. Sci. and Eng. Inno. Vol.2 No.8 2015, pp.302-304

303

The EWCS rule is inspired by this formulation. For

a given processing order  we decide a cost

allocation according to it. The rule allocates to each

agent his own processing cost, and half the waiting

cost caused by his job for jobs after him, and also half

the cost he suffered from those preceding him. With

this meaning we call it EWCS (Equal waiting cost

split) rule. And agent i ’s cost under processing order

 is:

(,) (,)

1 1
()

2 2
i i i i j l i

j P i l F i

f w p w p w p
 


 

   

It is easy to verify that the EWCS rule satisfies

efficiency.

Sequencing Situation with Precedence Constriant

The single machine sequencing situation with

precedence constraints with no initial order is denoted

by  , , ,N P p w , where P is a set of 2-tuples

representing the precedence constraints, and

(,)i j P implies that job j can be started only

after job i has been finished. The precedence

constraints can also be visually described by an

acyclic directed graph. The specific precedence

constraints of chains can be pictorially described as

several parallel directed chains.

The processing orders satisfying the precedence

constraints are called feasible orders, and we denote

the set of feasible order as ()A N . Finding the

optimal one among the feasible order may not be done

in polynomial time, and in practical we can decide the

final order by heuristic algorithm. For the case with

chains precedence, the optimal processing order can

be figured out: first cutting from each chain the head

with maximum ratio of weight to processing time

until all jobs are partitioned, and let jobs in a head be

processed together, then order the partitioned job-sets

in decreasing ratio of weight to processing time.

We generalize the EWCS rule to get the payment

of each agent of sequencing situation  , , ,N P p w :

1) if (,)j i P then i takes all the waiting cost

caused by waiting for j since in any feasible

order i is behind j ;

2) if (,)i j P then j takes all the waiting cost

caused by waiting for i ;

3) if (,)j i P and (,)i j P thus i and j share

the waiting cost equally.

For any feasible processing order ()A N  , we

define value j as

(,),(,) (,),(,)

(,) (,)

1
() ()

2
i i j j i

j P i j i P j F i i j P

i j j i i i

j i P i j P

q w p w p

w p w p w p

 


   

 

 

  

 

 

where P is the precedence constraints.

 It is easy to verify that ()ii N
q 

 is the total

cost under processing order , in other words we

have

 ()= ()i ii N i N
q C 

   .

The modified EWCS rule applied to single machine

sequencing situation satisfies efficiency.

Two-machine Sequencing Situation

The two-machine sequencing situation is proposed

by Calleja et al. [Calleja et al. 2002], and they showed

the balancedness of the related sequencing game

when all jobs have uniform processing time and

weight. A two-machine sequencing situation is

denoted as  , , ,),(M N w p q , where M contains

two machines, and N is the agent set, w is the

weight of agent. And each agent owns exactly two

jobs that need to be processed on the two machines

respectively. We use i to denote agent i 's two jobs,

i.e., agent i owns a job i with processing time ip

which need to be processed on machine 1, and also

another job i with processing time iq which need to

be processed on machine 2. Let (,)  be a

processing order, then  is the order on machine 1

and  is the order on machine 2. If =  , (,)  is

called a permutation order. We denote the completion

time of agent i on machine 1 and machine 2 as
1()iC  and

2 ()iC  respectively. The total cost

is
1 2max((), ())i i ii N

w C C 


 .

For two-machine sequencing situation, the optimal

processing orders have the following properties:

(1) There must be one optimal processing order being

a permutation one;

(2) If p q , then all optimal processing orders are

permutation ones.

The general problem is difficult to find an optimal

processing order, we can search from the permutation

orders and choose a final order. There is a special case

whose optimal processing order is easy to figure out:

each agent’s job with larger processing time is on

machine 1, and the case on machine 2 is similar. In

that case

J. of Appl. Sci. and Eng. Inno. Vol.2 No.8 2015, pp.302-304

304

1 2

1 2 1 2

max((), ())

1
= (()+ ()-| ()- ()|)

2

i i ii N

i i i i ii N

w C C

w C C C C

 

   













Thus if we let jobs on machine 1 in decreasing order

of their ratio i iw p (this order is optimal in

minimizing the total weighted completion time on

machine 1 [Smith 1956]), and jobs on machine 2

follow the order on machine 1, then we have
1 2

1

(() ())

= min ()

i i ii N

i ii N

w C C

w C

 







 







Which means the total cost is minimized, and the

optimal processing order is found. For the general

problem, there is a special order: the jobs on both

machines are in their decreasing order of the ratio of

weight to processing time. We denote the order as

(,)  , then it has a worst-case ratio less than 2,

since the total cost won’t be larger than
1 2(() ())i i ii N

w C C 


  ,

 and meanwhile it won’t be less than

1 21

(() ())
2

i i ii N
w C C 


  .

We focus on the cost allocation problem of the

general problem in the following part. And we choose

the final order a permutation one denoted by (,)  .

Let agents be finished on machine 1 (the job with

larger completion time is on machine 1) be 1S , and

jobs finished on machine 2 be 2S , then 1 2 =S S N .

We generate the EWCS cost allocation rule to the

general case: let each agent take his own job's

processing cost (his last finished job’s processing

cost), and let the waiting cost be allocated between

those agents preceding him and himself, he also share

the waiting cost of jobs delayed by him. For agent i ,

let

1 2(,) S (,)

1

(,)

1
(,) (

2

+)+ ,

i l i l i

l F i l F i S

i j i i

j P i

f w p w q

w p w p i S

 



 
   



 



 



1 2(,) S (,)

2

(,)

1
(,) (

2

)+ ,

i l i l i

l F i l F i S

i j i i

j P i

f w p w q

w q w q i S

 



 
   



 

 

 



Under this rule, an agent's waiting cost is his last

finished job's waiting cost, and he share the waiting

cost with those who caused waiting equally. The rule

also satisfies efficiency.

We give an instance of three agents to explain how

the rule works. Suppose the optimal processing order

which is also a permutation order, and ={1,2,3}

on both machines, the total cost is
1 2 1

1 1 2 2 3 3

1 1 2 1 2 3 1 2 3

() () ()

() ()

w C w C w C

w p w q q w p p p

   

     

For agent 1, 2, 3, their payments are respectively
1 1

1 1 1 2 1 3 12 2

1 1
2 2 2 2 1 3 22 2

1 1
3 3 3 3 1 3 22 2

(,) +

(,) +

(,) + .

f w p w q w p

f w q w q w p

f w p w p w p

 

 

 

 

 

 

，

，

CONCLUSION

We first introduced the EWCS rule for single

machine sequencing situation without initial order.

The rule assigns to each agent a cost which varies

over different processing orders. When there are

precedence constraints, the EWCS rule is modified

according to the precedence constraints. For two-

machine sequencing situation, the rule is generalized

according to the final order. For both sequencing

situations discussed, the generalized cost allocation

rule is practical.

REFERENCES

Borm P, Fiestras-Janeiro G, Hamers H, Sanchez E,

Voorneveld M, 2002 “On the convexity of games

corresponding to sequencing situation with due date”,

European Journal of Operational Research, vol.136, pp

616-634.

Calleja P, Borm P, Hamers H, Klijn F, Slikker M, 2002,

“On a new class of parallel sequencing situations and

related games”, Annals of Operations Research, vol.109,

pp 265-277.

Curiel I, Pederzoli G, Tijs S, 1989, “Sequencing games”,

European Journal of Operational Research, vol.40, pp

344-351.

Curiel I, Potters J, Prasad R, Tijs S, Veltman B, 1994,

“Sequencing and Cooperation”, Operations Research,

vol.42, pp 566-568.

Hamers H, Borm P, Tijs S, 1995, ” On games corresponding

to sequencing situations with ready times”, Mathematical

Programming, vol.69, pp 471-483.

Hamers H, Klijn F, Van Velzen B, 2005, “On the convexity

of precedence sequencing games”, Annals of

Operations Research, vol. 137, pp 161-175.

Mishra D, Rangarajan B, 2007, “Cost sharing in a job

scheduling problem”, Social Choice and Welfare,

vol.29, pp 369-382.

Shapley LS, 1953, “A value for n-Person Games”, In: H.W.

Kuhn and A.W. Tucker (eds.) Contributions to the

Theory of Games Ⅱ, Princeton University Press, pp

307-317.

Smith WE, 1956, “Various optimizers for single stage

production”, Naval Research Logistics Quarterly, vol.

3, pp 59-66.

