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Abstract:As we learned already, there is the quantum –Brownian motion generated by the quantum fluctuation in 

vacuum. According to the Langevin equation of fluctuation path
[1]

, we have derived the new quantum-Brownian 

motion with variance   

2 2( )
2

x
m

  


; and the solution of this Langevin equation is a Brownian bridge. And then 
we have suggested the new theory of Brownian bridge path integral of a free particle, which gives the best 
description for wave particle dualism. 
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INTRODUCTION 

Why did a free particle have probability distribution? 
Is there trajectory of a free particle? We should go 

further into these questions. The independent –

incremental process of production and annihilation of 
virtual particle pairs in vacuum fluctuation be called 

as quantum-Brownian motion, but the quantum-

diffusional coefficient DQ be not calculated by 

anyone. In this paper, we have derived ( )
2

QD
m




 as the 

starting point of our theory. 

I. Quantum-Brownian Motions of Vacuum 

Fluctuation and Free particle 

A.The Quantum-Brownian Motions of Vacuum 

Fluctuation 

We known that }0|}and{0|{
*

 tAtA tt respectively 

represent production operator and annihilation 

operator of virtual particle pairs in vacuum  2 , and 

0,
*

 tAAQ ttt   ,                              (1a) 

the quantum-Brownian motion is defined by 
* *

0
( ),

t

t t t tA A                                  (1b) 

where )(
*

ss  is called the quantum white noise sw . 

In this paper,first,we think the following functional 

equation  2  

  
*( ) ( )t t QA A B t                                   (1c) 

should be a operator equation,where is functional 

wave function.The operators )(
*

tt AA  and )(tBQ act 

on of two sides in equation (1c), which should be 
equal to the product of the fluctuation energy of 

virtual particle pairs and functional wave 

function  .Therefore, we conclude that equation 

(1c)should be astochastic differential equation. 

 

B. The Quantum-Brownian Motion of a Free 

particle  

i)．The mean square displacement of quantum-

Brownian motion of a free particle 

According to Einstein’s views [3]: The success of 

statistical interpretation of wave mechanics means 
that the motion of the particle has the property of 

Brownian motion. And we have learned that the 

classical field   at a given point behaves like a 

Brownian particle [4]. There is the white noise 
generated by quantum fluctuations, which leads to the 

Brownian motion of the classical field . For T and 

 both finite, there must be the thermal and quantum 

fluctuations, and the fluctuating path in the path 
integral obeys a “Langevin equation” [1]. From these 

views we will research into the quantum Brownian 

motion for a free particle. On the boundary between a 

particle and vacuum can generate the non-zero 

stochastic vacuum energy  )(tBQ  , vacuum 

momentum ( )QP t  and pressure, which are generated 

by the virtual particles in vacuum fluctuation. 
  We will further give a new Langevin equation 

     
m

tB

c
ttx

dt

dx Qt
)(

)
1

()),((  ,              (1d) 

Where )(tBQ  is the independent-incremental 

process of the energy of virtual particle pairs in 

production and annihilation processes, which 

describes the quantum fluctuation of vacuum energy. 

Therefore, the quantum-Brownian motion )(tBQ  is 

actually Gaussian-stochastic process of the energy 

change for virtual particle pairs.  Equation (1d) can 

be rewritten as the following form[1] 
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m

tP
ttx

dt

tdx Q )(
)),((

)(


 ,                               (1e) 

which is just that the fluctuating path in the path 

integral obeys a stochastic differential equation [1] 

     
d ( )

( ( ), )
d

x(t) P t
x t t

t m
         ，              (1f)  

or   
d ( ( )

( ( ), )
d

x ) P
x

m

 
  


   ，              (1g)                       

which is analogous to the classical Langevin 

equation. The momentum ( )P t in equations(1e,1f,1g) 

plays the role of the noise with the correlation 

function [5] 
' '( ) ( ) ( )P t P t im t t    ,                       (2) 

which has the same correlation function as the 

white noise. Because it   and
1( ) ( )ax a x  , thus 

Eq.2 becomes   

1

( ) ( ) [( ) ( )] [( )( )]

( ) ( ) ( ) ( )

P P im i i im i

i m i m

       

     

          

      

 

 
  (3) 

Equation (1g) has the solution as following form 

              0
0

( )
d

P s
x x s

m



                        (4) 

Obviously the last term in Eq.4 shows that the 
positional fluctuation of a particle deviating from its 

classical path, and the mean-square-displacement of a 

particle can be calculated by using the following 

method 
2 1 2

1 2 1 2 1 2
0 0 0 0

1 2
1 2 1 2 1 220 0 0 0

( ) ( )
{ ( ) (0)} d d ( ) ( ) d d ( )( )

( )
d d { } d d {( ) ( )}

P P
x x

m m

m

m m

   

   

 
        

  
      

  


  

   

   
  (5)   

Now we transform the integral variables into 
'

1 2    and
'

2 2(0 )      , which shows in 

Figure1, thus we have 

   

 

 

Figure 1. The integral region is equal to 2 times the size 

of the following triangle. 

 
'

' ' ' ' '

2
0 0 0

2 ( ) ( ) 2( )( ) ( )d d d
m m

   

        


   
 

 

               
0 0

2 ( ) 2 ( )

2
2

d d
m m

m

 

       



   
        

   

 
  

 

 
 


  (6)       

In Eq.6, we have used the properties of δ -

function[6]: 
' ' '

0
( ) 0d



     ,                                            (7) 

Since 
' '( ) 0     and  

0
( ) 1 / 2d



     , 

inserting Eq.6 into Eq.5, we get 

2{ ( ) (0)} 2
2

x x
m

 
 

   
 


.                                   (8) 

Eq.8 is the mean square displacement of the 

quantum-Brownian motion for a free particle. 

Comparing with the Einstein’s Brownian 

motion, the mean square displacement is  
2{ ( ) (0)} 2x t x Dt  ,                                    (9) 

where 
kT

D


  is the diffusion coefficient for thermal 

fluctuation. Thus, we can conclude that ( )
2

QD
m




 in 

Eq.(8) should be interpreted to be the diffusion 

coefficient for quantum fluctuation. Comparing the 

diffusion coefficient 
kT

D


  for thermal fluctuation and 

the diffusion coefficient ( )
2

QD
m




 for quantum 

fluctuation, they have extremely interesting symmetry. 

Since the fluctuation path in the path integral 

obeys the Langevin Eq.1, thus we can think a 

quantum-mechanical particle behaves like a 

“Brownian particle”. And the momentum ( )P t  in Eq.1 

plays the role of the Gaussian white noise, which 

leads to the “Brownian motion” of a quantum-

mechanical particle. 

ii). The solution of quantum-Brownian motion 

equation-Brownian bridge 

We see in Eq.(8) that the mean-square-root 

deviation Q of the quantum-Brownian 

motion of a free particle should be  
1

2{2( ) }
2

Q
m

 


.                            (10)  

Because ( )P   in (1b) plays the role of the noise,       

 we may write ( )P  =
( )

( ) ,
( )

dB
w

d





               (11a) 

Thus, we can rewrite the solution (4) of Langevin 

equation (1g) as the follwing 

''',

0 0
0

( ) q qP s
x x ds x x

m



      
,       (11b)                          

where 
', "q qx should be considered as Brownian bridge, 

which should be the fluctuation Brownian paths 

deviating from classical path 0( )x  between two 

points '(0)q  and 
"( )q   . 

BROWNIAN BRIDGE PATH INTEGRAL 

OF A FREE PARTICLE  

We think a free particle moving in Brownian bridge 

is the conditional stochastic process. We have 

calculated the conditional expectation for the 

probabilty amplitudes of a free particle moving along 

respective possible Brownian bridge paths ( )q t  to the 

probability amplitude of boundary interval ( " ').q q  

Thus we have yet obtained the amplitude distribution 

of the modulated plane wave, and its modulation 

factor is also Gaussian function. We have given the 
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best description for wave particle dualism and some 

new interpretations on wave function. 

A. Rewrite Feynman’s Path Integral by using 

Brownian Bridge 

Any possible path ( )q t  of a free particle moving in 

Brownian bridge must pass through two boundary 

points (0, ')q  and 0( , ")t q  as shown in figure2. 

 

Figure 2. Where we let ( )q t  be a lot of Brownian bridge 

paths, ( )q t  be average classical trajectory. Let ( ', ')q t  and 

( ", ")q t  be the two possible boundary points on ( )q t , and 
tx  be 

path fluctuations deviating from classical trajectory ( )q t . 

Let ( )q t  be the classical trajectory of a free particle, 

and we may give the new sense for formula                             
', "( ) ( ) q q

tq t q t x  ,                              (12) 

where we let 
', "q q

tx  be Brownian bridge, which may 

be difined by the following formula [6]  

0

', "

0

' ( " ' )q q

t t t

t
x B q q q B

t
     .          (13)                    

Let 
0

', " ', "

0 ', ",q q q q

tx q x q  and 
', "q q

tx may be 

written as .tx  Put t 1 2 0 10 n nt t t t t       , at 

' 0t   and 0" , ( )t t q t  must pass through two 

boundary points (0, ')q  and 0( , ").t q Now, we let ( )q t  

be any Brownian bridge trajectory of a free particle, 

tx be the path fluctuations of a free particle 

deviating from the average classical trajectory ( )q t . 
 We will rewrite Feynamn’s path integral by using 

Brownian bridge [1],[6],[7] . As shown in figure 2, a free 

particle starting from the initial point (0, ')q  can arrive 

the given end point 0( , ")t q  along all the possible paths 
( )q t  of Brownian bridge. There are the probability 

amplitudes ( ) [ ( )]
i

s q t

e   and phase change along 

respective bridge paths ( ).q t  There is only sample 

probability amplitude for single choosing path, but no 

probability [8],[9].And the probalility density of a free 

particle moving in Brownian bridge should obtain 

from its transition probability amplitude in Brownian 

bridge path integral. 

B.Brownian Bridge Path Integral 

The action along any Brownian bridge path ( )q t  

between (0, ')q  and 0( , ")t q  should be [7]  

[ ( )] [ ( )] [ ].tS q t S q t S x                        (14)  

    The total probablity amplitude of a free particle 

starting from the initial point (0, ')q  to end point 

0( , ")t q  should obtain by using the coherent 

superposition of the respective probability 

amplitudes along all the possible paths of Bronian 

bridge. The total probability amplitude is the 

transition probability amplitude of a free particle 

moving in Brownian bridge, thus we have 

[ ( )]

"| '" " | ' ' [ ( )] ( ) ,
i

S q t

q qq t q t g q t q t e   D              (15) 

where "| '[ ( )]q qg q t  is the superposition coefficient, which 

should be the conditional Gaussian function. The 

probability amplitudes along respective bridge paths 
( )q t  are 

0 2

0

2
0 0 0

0 0 0

1
[ ( )] [ ( ) ] [ ( ) ]

2

1 1
( ) ( ) .

2 2

t

tt

t t t

tt t

i i i
S q t S q t x m q t x dt

i i i
mq t dt mq t dx m x dx

e e e

e e e

 

  

 
 

  


  

  

              (16) 

Differentiating(13), we have 

0

0 0

0

2

2 2

0 0

( " ' )
,

2( " ' ) " '
( ) .

t

t t

t t

t t t

q q B
dx dB dt

t

q q B q q B
dx dB dtdB dtdt

t t

 
 




    
    

 

      (17)              

Because 0, 0,tdtdB dtdt  and 
2 2( ) ( ) 2 ,t t Qdx dB D dt                                  (18)                         

where QD  is the quantum diffusion coefficient, we 

have proven that the variance 2

tx  of positional 

fluctuation of a free particle in quantum-Brownian 

motion is  

2{ ( ) (0)} 2 2 ,
2

Qx x D
m

  
 

   
 


                      (19)  

where .it   Thus, we may write 
1

2 2
0 0

0
10 0

( ) ( ) lim 2
( 1)22

2 2 2

n
jt t

t t Q
t Q

j

tim
dx dBim im imD

n Dt
dt dte e e e



 





 

  


  

 

in formula (16). Therefore, by using the view point of 

Brownian bridge, the Brownian bridge path integral 

(15) of a free particle can be re-written as 

0

0

2
0

0

[ ( )]
( )

"| '

"| '
( 1)2

( )
2 2

[ ( )] ( )
" " | ' ' [ ] ,

t

t

t Q

i
S q t

imq t
dxq q

q q t t
im n Dim

q t dt

g q t q t e
q t q t g x e x

e e



 

 
 

   
   

 




 

D
D

(20)      

which shows that the integration variable has 

changed from Brownian bridge path ( )q t  to the path 

fluctuation tx  deviating from average classical 

trajectory ( )q t . 

In formula (20), we rewrite 
1 1

0 1

1 10

( ) ( )
( ) lim ( ) lim

,

n n

t
j j j

t
j j

imq t imq t
imq t x x x

dx

e e e

 
  



 

  
 

 


  (21)                  
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we see in (21) that the path fluctuation tx  can be 

considered as the sum of many independent 

increments jx . Inserting (21) into (20), we have 

 
2

0

0
( ) ( 1)2

2 2" " | ' ' .

t

Q

im im
q t n D

q t q t e e




     

1

1

( )
lim

1

"| ' 1 2 1 1
[ , , ] ( )

n

j

j

imq t
x

n

q q n jj
g x x x e d x









 

 
 

    
 
 




 ,  (22)            

where the conditional Gaussian function "| '[ ]q q tg x  

should be written as the follwing form [5],[10]  

2 2 2

1

/ 4 ( " ') / 4 ( " ')
1

"| ' 1 2 1 1 11
22 2 2

[ , , ] .

( 2 2 ( " ') )( 2 )

j j Qx q q D t t
n

q q n j

Qj

e e
g x x x

D t t







   


 

  
  

      
  

  

   (23)            

The mathematical form of Brownian bridge path 

integral (20) is analogous to the calculation of the 

conditional expectation for the probability 

amplitudes along respective Brownian brigde paths 
( )q t  to the probability amplitude of boundary 

interval [10]( " ') .q q  

    We integrate respectively to each independent 

increment | |jx  of path fluctuation in (22), by using 

Strotonovich stochastic integral, which has usual 

integral method, we have 

 
2

2 2 2 2

1 1
| |2 2( )

| |4 ( )

2 2

1 1
| | (2 ) ,

2 2

j

j
j j j

j

x
imq t

x u i

x j j

j j

I e e d x e e du
    


 

 


   






   
     
   
   
 

                                                                         (24)     

where 
| | | |( )

, , ,
2 2

j j

j j

x d xmq t
u du

 



 
  


 thus we can 

write 
2 2( )

,ju i
I e du e d

   
   

 
                          (25)                    

where , ,ju i du d      thus we have 

2 22 ( ) ,I e d d   
 

 

 
                                     (26) 

By using polar coodinates, we obtain 
2 22 2

0 0 0
,r rI e rdrd e dr



  
 

                  (27)                 

therefore 

2 2

1

2
1

(2 ) .
2

j

jx j

j

I e
 

 






 
 
 
 

                           (28) 

Inserting (28) into (22), we obtain 

2

2
0

2 2
0

1
1( " ')

24 ( " ') 1
( ) ( 1)2

2 2
1 2

12

" " | ' '

1
. (2 ) .

2( 4 ( " '))

t
Q

Q
j

q q

D t tim im n
q t dt n D

j

j
j

Q

q t q t

e
e e e

D t t

 
 









 

 



 

 
     
    

 

 

 

(29)   

According to the formula (8) of quantum diffusion 

coefficient 

2 2( ) 2 2 ,
2

j j Q j jx D i t
m

 
 

      
 


and 

2 2 ,
2

tx it
m

 
  

 


 

We can rewrite (29) as the following form 

2

2
0

0

1
1( " ')

24 ( " ') 1
( ) ( 1)

2
1 2

12

" " | ' '

1
. (2 )

2( 4 ( " '))

t
Q

Q

q q

D t tim im n
q t dt n D

j

j
j

Q

q t q t

e
e e

D t t

 





 

 




 

 
     
    

  

 

2

2

2

2
2

2
0

0

( )
2

2

1 1( " ') 2 ( )
24 ( " ') 2

( ) ( 1)
2

1 2
2

1
(2 )

2( 4 ( " '))

j

t
Q

Q

t

t

m q t
i t

m

q q i mq t
t

D t tim im
q t dt n D
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                                                                            (30)               

where 
2

tx  is the variance of path fluctuation tx  

of a free particle. Take note of 
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                 (31) 

Because the linear operation of Gaussian 

processes should be also Gaussian process [5] ,thus 

the probability amplitudes of a free particle moving 

along paths ( ),q t tx  and ( )q t  in Brownian bridge 

should have the same Gaussian distribution. 

Therefore, we may rewrite (30) as the following 

form 
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                                                                       （32)  

where 
2

  is the positional variance of a free particle 

moving in average classical trajectory ( ).q   

C.Transmiting Amplitude Wave Function in 

Brownian Bridge 

According to Huygens-Fresnel principle of 

transmiting amplitude wave 
[7]( , )x t  

2 2 2 2 1 1 1 1 1( , ) , | , ( , ) ,x t x t x t x t dx 



              (33a)                

we may rewrite formula (32), let '( ')q   and "( ")q   

are the variable boundary points, and ( )q   is 

variable average classical trajectory in Brownian 

bridge. Thus, we have 
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            (33b) 

which is multiplied by marginal probability 

amplitude on two sides of formula (32), and 

integrating for the following boundary condition [5] : 

the probability density 

  | ( " ') | , 0,f q q                            (33c)                   

which shows that the fluctuating boundary distance 

 | ( " ') |q q    keep finite values. 

We see in (33b) that the integral result on left 

side should be the amplitue wave function ( ( )),q   

and integral result on right  side is .  Thus, 

formula (33b) becomes 
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                                                                          (34) 

which is just the modulated plane wave, and the 

amplitude modulation foctor is also Gaussian 

function, the peak is at ( ) 0,q    when 

0, ( ( ))q   is   functional wave packet [8] , its 

width is 2 ,  which should diffuse with time   as 

Gaussian wave packet, as shown in figure3. 

 

Figure 3. The peak of ( ( ))q   is at ( )q  =0, ( ( ))q  is 

 functional wave packet, when 0.   

 

CONCLUSION 

As mentioned above, we have rewritten Feynman’s 

path integral into Brownian bridge pach integral, 
which is the best description for wave particle 

dualism. First, we can clearly desribe the stochastic 

motions of a free particle on respective possible 

sample bridge paths ( )q  , path fluctuations x  and 

average classical trajectory ( )q  , and we think these 

stochastic motions of a free particle in Brownian 

bridge should be its quantum Brownian motion. 

Next,we think respective probability amplitudes 
[ ( )]

i
S q

e


  of a free particle moving along respective 

Brownian bridge paths ( )q   are the periodic sample 

functions of stochastic process in Brownian bridge. 

And these sample bridge paths ( )q   and 

correponding sample amplitude functions in 

stochastic Brownian bridge process should be 

simultaneous [5] , thus, we can take the coherent 

superposttion to calculate the conditional expectation 

in Brownian brigde path integral; and we can explain: 

Why did a free particle have the non-locatized 
connection and entangled state? It is just due to that 

these different sample bridge paths ( )q   and 

corresponding sample probability amplitudes of a 

free particle are simultaneous [5]  in stochastic 

Brownian bridge process. 

Comparing schrödinger equation 

)
4

(,
2

2

m

ih

dx

d

dt

d


                                   (35) 

and diffusion equation 

               
2

2

dx

d
D

dt

d
  ,                                 (36) 

Fürth and L.F.Favella had proven that equations 

(35)and(36)are analogous[11]. 

Now, we can strictly prove that schrödinger 

equation is actually Fokker-Planck equation with 

quantum-diffusional coefficient. We rewrite 

schrödinger equation for a free particle as the 

following form 
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22
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 ,                       (37a) 

which may rewrite as 
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,                       (37b) 

comparing equations (11)and(13b),we have 

            QiD ,                                                 (37c) 

where QD  is just the quantum-diffusional coeffivient 

in quantum-Brownian motion for a free 

particle.Rewriting  b37 as following form 
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

 
,   (38)        

which is just Fokker-Planck equation with quantum-

diffusional coefficient QD ,and its solution should be 

the transfer probability amplitude of the quantum-

Brownian motion for a free particle.Thus,we can 

conclude that schrödinger eguation is actually 

Fokker-planck equation with quantum-diffusional 

coefficient QD . 
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