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Abstract:  Both financial development and industrial structure may have great effects on an economy and hence 

on carbon emissions. However, no research has examined the effect of these two variables on carbon emissions in 

China against this background to date. To fill up this gap, a Spatial Durbin Model is used to investigate the effects 

of financial development and industrial structure upgrading on carbon intensities in China from 2007 to 2017. The 

results show that financial development increases local carbon intensities but decreases adjacent areas’ carbon 

intensities to a larger extent, so that it has an overall negative effect on carbon emissions. This suggest that 

financial resources in China were not channeled into environment-protecting projects. Further, industrial structure 

upgrading has no significant effects on carbon emissions. The paper suggests that China should direct its financial 

resources into energy saving, emission reduction and industrial structure upgrading projects and firms to achieve a 

“both good and fast” growth as it wishes. 
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INTRODUCTION 

The Chinese government has made great efforts to 

tackle the climate problem and great achievements 

has been realized. However, still greater efforts need 

to be made to further achieve it later objectives of 

emission reduction.   

Chinese government has rigorously pushed the 

upgrading of its industrial structure to save energy 

and reduce emissions since then to reach this goal. 

The second reason that the year 2007 is special is that 

the global financial crisis started in 2007 affected 

China significantly.i,ii To illustrate, the annual GDP 

growth declined from more than 14% in 2007 to 6% 

in 2017. The Chinese government introduced a large 

economic stimulus plan in 2008 to recover, including 

the domestic Four Trillion Yuan Stimulus Package. 

As a result, Chinese financial industry started to grow 

rapidly: the ratio of the GDP of the financial industry 

increased from 4.57% in 2007 to 8.01% in 2017, 

accompanied by a increase of the ratio of 

employment by the financial industry of 0.517% in 

2007 to 0.887% in 2017. Meanwhile, financial 

resources boomed. To illustrate, total credit increased 

by 4.25 times, from 45426.78 billion RMB in 2007 to 

193193.4 billion in 2017; M2 increased by 4.57 times, 

from 25088.2 billion in 2007 to 114644.52 billion in 

2017. China’s carbon intensity decreased greatly 

from 2007 to 2017, while financial development 

(measured by the ratio of financial institutions’ loans 

to GDP) increased obviously and steadily. Though 

industrial upgrading (measured by the ratio of second 

and tertiary GDP) also improved, its improvement 

was no as evident compared with the trend of carbon 

intensity and financial development during this period. 

These changes in the industrial structure and financial 

development will certainly affect the carbon 

emissions of the economy.  

No research has examined the effect of these two 

variables on carbon emissions in China against this 

background up to now. This study specifically 

investigates the effect of financial development and 

industrial structure upgrading on carbon emissions 

since the 2007.   

The rest of the paper is organized as follows. 

Section two is a brief literature review. Section three 

is the theoretical mechanism that FD and industrial 

structure upgrading may affect carbon emissions. The 

methods and data used are described in section four. 

Section five presents the results and discussions. The 

final section concludes and discusses related policy 

implications. 

METHODOLOGY AND DATA 

Measuring provincial carbon intensity 

Carbon intensity is measured as the ratio of CO2 

emissions to GDP as shown in Eq. (1) 
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CI=CE/GDP                                           (1) 

where CI is the carbon intensity of a province, and 

CE is the CO2 emissions of that province. The CO2 

emissions in the paper are calculated using the 

method recommended in the Intergovernmental Panel 

on Climate Change's "Guidelines for National 

Greenhouse Gas Inventories". The calculation 

method is shown in Eq. (2).  
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Nine major energy sources are selected to measure 

the CO2 emissions, which include raw coal, cleaned 

coal, coke, crude oil, gasoline, kerosene, diesel, fuel 

oil, and natural gas; k represents the type of energy (k 

= 1,2,...,9). In order to avoid missing the calculation 

of CO2 emissions in the process of energy conversion, 

E is the amount of energy available for local 

consumption. SC represents conversion coefficient of 

standard coal, LCV represents the average low-order 

calorific value, and CEC represents the carbon 

emission coefficient and COF represents the carbon 

oxidation rate.  It is assumed that carbon in the fuel is 

completely oxidized during combustion in this paper. 

Hence, COF is equal to 100%. 

The data cover annual data of China’s 30 provinces 

(excluding Hong Kong, Tibet, Macao, and Taiwan for 

lack of data) from 2007 to 2017. All the energy 

related data were compiled from China Energy 

Statistical Yearbook, while GDP were from China. 

Measuring spatial auto-correlation of provincial 

carbon intensity 

The CO2 emissions of a region may be spatially 

dependent on those of neighboring regions. Moran’s I 

is applied to identify the pattern of global auto-

correlation of China’s provincial carbon intensities. 

Generally, Moran's I is between -1 and 1. When 

Moran's I > 0, it indicates positive spatial correlation; 

the larger the index value, the more obvious the 

spatial aggregation. When Moran's I <0, it indicates 

negative spatial correlation; the larger the index value, 

the greater the spatial difference. Otherwise, Moran's 

I = 0, which means a random distribution of space. 
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Where: n —the number of provinces, n = 30; Xi — 

the carbon intensity of province i; Xj — the carbon 

intensity of province j;  — the average carbon 

intensity of each province; wij — the spatial weight 

matrix, here the weight is the reciprocal of the 

squared geographical distance between two 

provinces’ capital cities; S0 — the sum of all spatial 

weights.  

Generally, the z score, usually the difference of a 

value and its mean divided by its standard deviation, 

can test the significance of Global Moran’s I. 

Data and variables 

The dependent variable is carbon intensity. The 

two main independent variables are financial 

development and economic structure upgrading (or 

industrial structure upgrading). Industrial structure 

upgrading is proxied by the radio of GDP of the 

secondary industry plus tertiary industry to provincial 

GDP. The ratio of financial institutions’ loans to GDP 

is used to measure the main independent variable, FD, 

as many scholars use the same measure as ours to 

measure financial development, and this measure is 

particularly appropriate in China since loans are a 

primary means of financing and affect the activities 

of firms greatly, since the capital market there is not 

as developed and rational yet. 22  

The control variables are selected according to 

environmental impact models— IPAT (put forward 

by Ehrlich in 1971) and STIRPAT model,iii with the 

latter being an extended form of the former. Equation 

(5) is the general STIRPAT model. 

                     eTAaPI dcb                                (5) 

where I represents environmental pressure; P, A and 

T represent population, affluence and technology, 

respectively; a is a constant term; b, c, and d are 

exponential terms of P, A, and T, respectively; e is an 

error term. Hence, control variables that affect carbon 

intensity are chosen from three aspects: population, 

affluence and technology.  

Urbanization is used to represent population factor, 

GDP per capita is used to represent economic growth, 

and patent applications and FDI to proxy domestic 

technology and foreign technology, respectively. 

Further, as energy intensity may proxy energy-saving 

and emission-reduction technologies, it is also 

controlled in our model (Zhao et al错误!未定义书

签。; Liu et al., 2017iv; Liu et al., 2016v). The GDP 

and FDI data are deflated by the 2005 price level. 

Table 1 shows the specific meaning and details of the 

variables. The financial development data were 

collected from EPS, patent applications from China 

Science and Technology Statistical Yearbook, and the 

rest as mentioned in section 4.1. 

Introducing our main and controlled variables into 

equation (5) and transforming it into the logarithm 

form to eliminate heterogeneity, we have the 

following panel regression model, before considering 

the spatial effects of variables:  

         （6） 

where β0 is the intercept, βn (n=1, 2,……,7) is the 

coefficients of the independent variables, and ɛ is the 

random error.  
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Table 1.  Variable definitions and descriptions 

In order to examine whether there are severe 

multicollinearity in the seven independence variables, 

Variance Inflation Factor (VIF) test are conducted 

according to the equation (5).The VIF of the variable 

urbanization is greater than ten. Hence, there is 

serious multicollinearity in the model of the seven 

independence variables. Then the method of omitting 

variable is used to eliminate multicollinearityvi and 

we omitted the variable urbanization. Ultimately, the 

VIF test results of 6 explanatory variables shows that 

the VIF of all variables are less than ten, indicating 

no serious multicollinearity in the six variables. 

Therefore, the independence variables are finally 

determined to be financial development, industrial 

structure upgrading, GDP per capita, technology, FDI 

and energy intensity in the model. 

The spatial econometric model 

The CO2 emissions of a region may be spatially 

dependent on those of neighboring regions. Moran’s I 

is applied to identify the pattern of global auto-

correlation of China’s provincial carbon intensities. 

Generally, Moran's I is between -1 and 1. When 

Moran's I > 0, it indicates positive spatial correlation; 

the larger the index value, the more obvious the 

spatial aggregation. When Moran's I <0, it indicates 

negative spatial correlation; the larger the index value, 

the greater the spatial difference. Otherwise, Moran's 

I = 0, which means a random distribution of space. 

As is proved by many, China’s carbon emissions 

have significant spatial dependence and inaccurate 

results will be derived using econometric models 

without consideration of the spatial dependence of 

variables.3,4 Hence, spatial econometric models will 

be applied to investigating the effect of financial 

development and industrial upgrading on carbon 

emissions in China in this paper. Currently, there are 

three models commonly used in spatial panel data 

regression: spatial lag models (SLM), spatial error 

models (SEM) and spatial Durbin models (SDM). 

The spatial lag variable of the dependent variable is 

introduced into Spatial lag models as an explanatory 

variable, the spatial lag variable of the standard error 

is introduced into the spatial error models (SEM) as 

one explanatory variable, while both are introduced 

into the spatial regression model to be the spatial 

Durbin model. Hence, spatial Durbin models, which 

could be expressed as equation (7), are in fact a 

general form of SEM and SLM, and could be reduced 

to SLM or SEM under certain conditions.   

ittiitititit WXXWDD  
     （7） 

Where: itD
—the dependent variable; W —the 

geographical distance spatial weight matrix;   — the 

coefficient of the spatial lag term of the dependent 

variable; itX
 —the vector of explanatory variable;  

 — the coefficient of the independent variables;   

— the coefficient of the spatial lag term of the 

independent variable respectively; i  and t  —the 

intercepts of the spatial effect model and time effect 

model respectively; it  — the random error. 

According to equation (7), the following SDM is 

employed to investigate the effect of financial 

development and industrial structure upgrading on 

carbon emissions:  
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Where: i —the i-th province, i=1，2，……，30; t 

— the year; W — the spatial weight matrix;  — the 

intercept; — the coefficient of the n-th explanatory 

variable, n=1, 2, ……, 6;  — the coefficients of the 

spatial lag terms for the dependent variable; — the 

coefficients of the spatial lag terms for explanatory 

variable, m=1, 2, ……6 ;  — the random variable.  

If , then the SDM model expressed in 

equation (7) become a SLM, while if ,  

then equation (7) become a SEM. Otherwise, it is the 

general SDM. 

Though SDM is a general form of both SEM and 

SLM, Lesage and Pace proved that SDM could not 

estimate the marginal effects, as accurately as non-

spatial models, of the explanatory variables.vii Hence 

they put forward a partial differential approach to 

estimate the marginal effects of the variables. Elhorst 

extended this method into SDM to derive the spatial 

spillover effects, viii  Usually, the effect of an 

Variables Definitions 

PCO2 
Per capita carbon dioxide (CO2) 

emissions  

FI 
Financial inclusion composite 

index 

PGDP 

Economic growth measured by the 
real per capita GDP, which applies 

2005 as the base period 

IS 

Industrial structure upgrading 
computed by the proportion of the 
output value of tertiary industry to 

that of secondary industry 

UL 

Urbanization evolution evaluated 
by the ratio of urban population to 

total population 

P Regional population 

EC 

Energy intensity is measured by the 
amount of energy consumed per 

unit of GDP 

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.7.0.0/resultui/html/index.html#/javascript:;
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.7.0.0/resultui/html/index.html#/javascript:;
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explanatory variable can be divided into the direct 

and indirect effects.   

To derive the direct and indirect effects, we can 

transform equation (7) into the following expression:   

                    (9) 

Equation (9) could be further transformed into the 

following matrix by differentiating it with respect to 

the k-th explanatory variable: 
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                  (10)  

Then, for the k-th explanatory variable in Eq. (10), 

calculate the mean of the diagonal elements, we can 

get the direct effect of the k-th explanatory variable. 

Further, calculate the mean of either the columns or 

rows, excluding the diagonal, in Eq. (10), we can get 

the indirect effect of an explanatory variable. It 

represents the influence of the k-th explanatory 

variable on the dependent variable of adjacent areas, 

or the influence of the k-th explanatory variable of 

adjacent areas on local dependent variable; the total 

influence of the k-th variable is the sum of the 

indirect and direct effect. 

RESULTS AND DISCUSSION 

The spatial auto-correlation of Chinese provincial 

carbon intensity 

Calculation results show that Moran’s I fluctuate 

between 0.22 and 0.28 during these 11 years and are 

all significant at the 1% significance level (Z-score 

are all greater than 2.58). This illustrates that Chinese 

provincial carbon intensity is spatially auto-correlated 

or spatially dependent, instead of randomly 

distributed. Therefore, spatial effects must be 

modeled when regressing the impact factors of 

China’s provincial carbon intensity to obtain accurate 

results in agreement with the practice.  

Results for spatial panel regression 

Hausman test was conducted based on the ordinary 

panel models first. We get a test statistic of 23.17, 

with a p-value of 0.0016. This illustrates that we 

should reject the random-effect model, with a 1% 

significance level. Next, to verify the existence of 

spatial dependence between variables, we conduct the 

LM tests. Since the random effect model is rejected, 

the LM tests should be performed based on the fixed-

effect models and mixed-effect model. Thirdly, LM 

tests were conducted for ordinary panel model with 

fixed and mixed effects to determine whether the 

spatial effects should be considered (See Table 2). 

Table 2 shows that both the mixed effects and 

individual fixed effects models reject the null 

hypothesis that there are no spatial lag effects or 

spatial error effects. This confirms the existence of 

spatial dependence between the variables in our 

model. Therefore, spatial econometric models, with 

maximum likelihood estimation, could be applied to 

our panel regression since ordinary regression models 

without considering the spatial interdependence of the 

variables could give biased or incorrect estimations.  

 
Table 2.  LM Test statistics for ordinary panel models when spatial 

effects are not controlled for. 

Variable 
No 

fixed 
effects 

Space  
fixed 

effects 

Time  
fixed 

effects 

Space 
&time  
fixed 

effects 

R2 0.7481 0.7445 0.6506 0.6000 

LM-lag 
392.90
28*** 

393.57
28*** 

121.83
32*** 

129.2256**
* 

Robust 
LM-lag 

822.69
72*** 

17．2

145**
* 

2.5941
** 

1.1188* 

LM-
error 

534.14
18*** 

531.06
11*** 

226.68
48*** 

208.1933**
* 

Robust 
LM-
error 

163.93
62*** 

154.70
28*** 

105.44
57*** 

79.0864*** 

Hausman test=23.6935** 

Wald_lag=359.5916*** 

Wald_error=12.5817* 

LR_lag=214.1663*** 

LR_error=11.6696* 

Note: *, **, *** represent significance at 10%, 5%, and 1% level 

respectively, for Tables 2-5. 

Comparing the test statistics of the four models, it 

can be deduced that the R2 and Adjusted R2 of the 

mixed effects model and the individual fixed effects 

model are the highest, indicating that they give better 

fits. What’s more, the LM-lag, LM-error, Robust 

LM-lag and Robust LM-error tests for the mixed 

effects model and the individual fixed effects model 

are all significant at a significance level of 1% or 5%, 

while the LM-lag、LM-error test statistics of time 

fixed effects model and individual-time fixed effects 

model fail the significance test at 10% significance 

level. Hence, the mixed effects model and individual 

fixed effects model are more desirable. However, 

some research suggest fixed effects models are more 

appropriate and robust in economic regressions most 

of the time. Therefore, individual fixed effect model 

is selected as our panel regression model.  

The LM test statistics in Table 2 support the use of 

spatial econometric models in our investigating the 

effect of financial development on carbon intensity. 

Hence, SDM is applied to studying their relationship, 

controlling other variables. Table 2 illustrates both 

the estimation results and related tests statistics. We 

see that the R2 is 0.86 originally for ordinary fixed 
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effects model (See Table 2) when spatial effects were 

not taken into account in the regression; however, it 

improved to be 0.9094 (in Table 4) when spatial 

effects were taken into account, with obviously 

superior fitness. Meanwhile, we undertook Wald-lag, 

LR_lag,Wald_error, and LR_error tests to see if the 

spatial Durbin model could be reduced to either SLM 

or SEM, and the test statistics, all significant at 1% 

level, prove that SDM can be reduced to neither. 

Hence, spatial Durbin model should be used as the 

regression model. 

 

Results of spatial Durbin estimation 

  The spatial Durbin model regression results are 

shown in Table 3. The test statistics of SDM are 

shown in Table 4.  
Table 3.  Estimation and test results: impact of FI on CO2. 

Table 4.  Estimation results: the moderating role of industrial 
structure 

Variable 
Coefficient 
(Model 11) 

Coefficient 
(Model 12) 

lnFI 0.1321** 0.1825*** 

LnPGDP -0.0496 0.0718 

lnIS -0.3657*** -0.1191* 

lnUL 0.8705*** 0.5057** 

lnP -0.1252*** -0.1525*** 

lnEC 1.1331*** 1.0842*** 

lnFI*lnIS  -0.1479*** 

R2 0.9467 0.9490 

Table 3 illustrates that the local province’s carbon 

intensity increases with local financial development, 

FDI, and energy intensity from 2007 to 2017, while 

decreases with local technology. However, local 

affluence and economic structure do not affect local 

carbon intensity significantly. Further, adjacent areas’ 

financial development, FDI, and industrial structure 

upgrading significantly curbs local carbon emissions 

while adjacent areas’ affluence and technology 

significantly increase local emissions. Lastly, 

adjacent areas’ energy intensity has no spatial 

spillover effects. 

Table 4 shows that the R2 of SDM regression 

results improved to 0.9094, better than the results 

when no spatial effects are considered. Further, the 

Log-L of the SDM improved from the original 15.63 

to 79.6376, apparently improved. The four tests: 

Wald_lag, Wald_error, LR_lag, LR_error, all rejected 

the hypothesis that spatial Durbin model could be 

reduced to SLM or SEM. Therefore, the 

appropriateness of spatial Durbin model is proved. 

The spatial Durbin model should be used in the 

regression. 

However, as mentioned above, the coefficients 

derived according to our spatial Durbin model in 

Table 2, could not show the marginal influence of the 

explanatory variables on the dependent variable. 

Hence, we apply equation (10) and calculate the 

mean of the diagonal elements to get the direct effect 

of the k-th explanatory variable. Further, calculate the 

mean of either the columns or rows, excluding the 

diagonal, in Eq. (10), to get the indirect effect of an 

explanatory variable. Finally, we sum up the indirect 

and direct effect to get the total influence of the k-th 

variable. The direct, indirect, and total effects of the 

variables are shown in Table 5. 
Table 5.  Estimation results: mediation effect of urbanization 

Variable 

Model

（16） 
PCO2 

Model

（17） 
UL 

Model

（18） 
PCO2 

lnFI 0.2066( 1

)*** 

0.0954(

1
)*** 

0.1321(

1 )**  

LnPGDP 0.2280** 0.3064*** -0.0496 

lnIS 
-

0.4188*** 
-

0.0591*** 
-

0.3657*** 

lnUL 
  

0.8705(

2 )***  

lnP 
-

0.1249*** 0.0008 
-

0.1252*** 

lnEC 1.2270*** 0.1063*** 1.1331*** 

R2 0.9459 0.9724 0.9467 

 

The effect of financial development on carbon 

intensity 

China is rigorously promoting its urbanization and 

its transportation. As a result, the Chinese society is 

Variable Coefficient T-statistics 
Z-

probability 

lnFI 0.1321** 2.5427 0.0110 

LnPGDP -0.0496 -0.4582 0.6468 

lnIS 
-

0.3657*** -5.9797 0.0000 

lnUL 0.8705*** 4.5600 0.0000 

lnP 
-

0.1252*** -3.2754 0.0011 

lnEC 1.1331*** 14.3523 0.0000 

W*lnFI -0.1635** -2.2817 0.0225 

W*lnPGD
P 0.1646 1.0777 0.2812 

W*lnIS 0.4455*** 5.1754 0.0000 

W*lnUL 
-

0.8261*** -3.4461 0.0006 

W*lnP 0.1791*** 3.9761 0.0001 

W*lnEC 
-

0.9339*** -9.9639 0.0000 

W*dep.var
. 0.9100*** 61.8241 0.0000 

R2=0.9467   

Log-
likelihood=136

.4405 
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beginning to become one with rather mobile 

population, which further resulted in fast and frequent 

movement of production factors. The moving of 

production factors and resources, in turn, can impact 

the economic structure, economic growth, and carbon 

emissions significantly in China. As a production 

factor, financial resource is still not abundant enough 

in China. Further, financial resources play crucial 

allocation roles in distributing resources to where 

they flow into: all the other production factors, such 

as labor, will follow where financial resources flow 

into. Therefore, where the financial resources is 

directed into is of vitally importance in the upgrading 

of economic structure and carbon emissions, and in 

the realization of a “both good and fast growth”.    

Table 5 illustrates that since 2007, local provinces’ 

financial development is significantly (one percent 

significance level) positively related to local carbon 

emissions and at the same time significantly 

negatively related to (one percent significance level) 

adjacent areas’ emissions. The local province will 

suffer an increase by 0.1918% in local carbon 

intensity while the adjacent areas will enjoy a 

decrease by 0.7264% in their carbon intensity, for 

every one percent increase in local financial 

development. The total effect is -0.5346, significant 

at one percent significance level. This reveals that a 

net decrease by 0.5346% in the carbon intensity of 

the country as a whole will be resulted when there is 

one percent increase in a local province’s financial 

development. According to the three mechanisms 

through which financial development can affect 

carbon emissions introduced in the introduction 

section, the result that local financial development 

contributes to improve local emissions should be 

caused by the consumption effect and production 

expansion effect. This means that local finance 

resources were not channeled to technological 

innovation projects as they should, but were 

channeled into consumption and firms production, so 

that local citizens had more funds to purchase more 

energy-consuming goods such as cars, air 

conditioners, and so that local enterprises gained 

sufficient financial resources to produce more. The 

increase in local production and consumption resulted 

in more energy consumed and more carbons emitted 

locally. On the other hand, as local economic activity 

expanded and local living standards improved, 

adjacent working age people move to local 

enterprises for better jobs, more income and better 

living conditions. As a result of people flowing out of 

neighboring areas’ and into local areas, two effects 

were resulted. First, more carbon is emitted in the 

local area because of expanded production and a 

larger population. Second, neighboring areas enjoyed 

less carbon emissions because of a decreased 

population. As a result of more reductions in carbon 

emissions experienced by neighboring areas than the 

increase in emission in the local area, which might be 

caused by economies of scale: much more resources 

will be consumed when people are scattered than 

clustered, the nation will enjoy a decrease in its 

emissions as a whole for an improved financial 

development in one local province. 

Table 5 shows that from 2007 to 2017, both the 

direct effect and total effect of industrial upgrading 

are insignificant. Though there is only a weak curbing 

indirect effect, we do not interpret a 10% significance 

level as significant, considering the insignificant 

direct and total effects. As mentioned before, China 

has officially and intentionally strived to upgrade its 

industrial structure to protect the environment and to 

achieve a “both good and fast” economic growth. 

However, our model does not reveal a significant 

relationship as expected. If the related policies have 

taken effects, there should be a significant 

relationship between its industrial structure upgrading 

and emissions. Therefore, considering China’s 

endeavors of upgrading its industrial structure, we 

think there is no effect of this measure in reducing 

emissions, neither in reducing local emissions nor in 

reducing emissions in the country as a whole. 

According to the channels that industrial structure 

upgrading may affect carbon emissions mentioned in 

section one, we think the insignificant effect of 

industrial structure upgrading on carbon emissions 

might be a result of two causes. First, it may be that 

the industrial structure upgrading had not played any 

significant role in reducing emissions, in saving 

energies, or in upgrading firms from energy-intensive 

to capital-intensive or knowledge-intensive ones at all. 

Taking into consideration of the role that financial 

resources could place in industrial structure 

upgrading, we might infer that financial resources 

were not channeled into technological innovations 

and upgrading of industrial structures. This may be 

witnessed as a failure of government policy in 

achieving a “both good and fast” economic growth 

through industrial structure upgrading. Second, this 

may suggest that there have been not sufficient less-

energy consuming firms replacing energy-intensive 

firms to reduce emissions as China wished. In other 

words, there were some firms transforming from 

energy-intensive to capital-intensive and knowledge-

intensive firms, which contributed to a reduction in 

emissions. However, as there were simultaneously 

some farmers transforming into factory workers who 

worked in labor-intensive or energy-intensive firms, 

more carbon was emitted as the primary production 

were replaced by industrial production. As the two 

effects offset, we did not evidence any significant 

relationship between the two variables. This shows 

that its industrial structure upgrading policy has 

begun to achieve some effect in realizing a “both 

good and fast” growth, but its effect were not 

sufficient, either as a result of the short time period 

studied or as a result of no in-depth policy measures 

taken. This means China should carry on with or 



 

J. of Appl. Sci. and Eng. Inno., Vol.10 No.2 2023, pp. 113-119 
 

                                                                                                                                                                                                                                                                                                                            

119 

deepen its current industrial structure upgrading 

policy to reap its benefits in the future. Anyway, 

China should direct its financial resources into 

capital-intensive and knowledge-intensive firms to 

upgrade its industrial structure to realize a “both good 

and fast” growth. 

CONCLUSIONS 

Using China’s provincial data from 2007 to 2017, 

the paper investigates the effect of financial 

development and industrial upgrading on carbon 

intensity. Firstly, China’s provincial carbon emissions 

are calculated. Then, the effect of financial 

development and industrial structure upgrading on 

China’s carbon intensity is investigated by using the 

Spatial Durbin Model. The following conclusions are 

derived. Firstly, viewed from the perspective of the 

local provincial, financial development, energy 

intensity and FDI are significantly positively related 

to local carbon emissions, while technology is 

significantly negatively related to the local province’s 

emissions. However, viewed from the national 

economy as a whole, financial development obvious 

curbs CO2 emissions. Meanwhile, energy intensity 

and economic development significantly contribute to 

CO2 emissions. Secondly, although financial 

development curbs carbon emissions in China since 

the recent financial crisis. Overall speaking, this 

curbing effect is not realized through the direct effect, 

which is positive and shows financial development 

increases local carbon emissions. This illustrates that 

the financial development affects emissions 

essentially through the consumption and production 

effect instead of the technology innovation effect. 

Hence, financial resources were essentially not 

allocated to technological innovations and R&D of 

enterprises to promote the new technologies to save 

non-recycling resources and reduce emissions. 

Thirdly, industrial structure upgrading since 2007, 

especially the replacing of energy-intensive firms by 

less energy-consuming or hi-tech firms, was not 

placing its role fully in achieving a low-carbon 

economy as wished. Taking into consideration of the 

role that financial resources could place in industrial 

structure upgrading, we might infer that financial 

resources were not sufficiently channeled into 

technological innovations or capital-intensive or 

knowledge-intensive to achieve upgrading of its 

industrial structures. 
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