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Abstract: This paper is considered with the problem of H∞ model reduction for a class of 
discrete-time 2D Markovian jump systems with state delays described by the Roesser model. Since 
these obtained conditions are not expressed as strict LMIs, the cone complementarily linearization 
(CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI 
constraints. A numerical example is given to illustrate the design procedures. 

Introduction 
With the development of modern industry and economy, more and more multivariable systems 

and multidimensional signal need to be handled. Such as multi-dimensional digital image 
processing, multivariable network realization, meteorological satellite image analysis, which are 
mostly appear as 2D discrete system model. For these profound engineering backgrounds, in recent 
years, 2D discrete systems have received much attention, and many important results are available 
in the literatures [1, 2]. 

On a different direction, a considerable research effort has been recently devoted to the 
analysis of a kind of hybrid systems -- Markovian jump system whose structures are subject to 
random abrupt changes may due to component or interconnections failures, sudden environment 
changes, change of the operating point of a linearized model of a nonlinear, and so on. The 
application of Markovian jump systems can be found in many physical systems, such as 
manufacturing systems, target tracking, and power system [3-4]. And some problems of stability, 
controller design and filtering related to these systems also have been extensively studied by 
numerous scholars, see for instance [5, 6], and the references therein. Since delay usually occur in 
many physical and engineering systems and causes instability and poor performance of systems, 
time-delay systems have been studied extensively on the subject of control and model reduction 
over the years. For example, in [7] Wang et al. addressed the model approximation for discrete-time 
Markovian jump systems with mode-dependent time delays. However, the aforementioned results 
are just concerned with one-dimensional systems, and to the best of the authors’ knowledge, few 
effort has been made toward investigating the problems arising in 2D jump systems. 

In this paper, we extends the sufficient conditions in terms of LMIs plus matrix inverse 
constraints are derived for the existence of a solution to the reduced-order model problems. Since 
these obtained conditions are not expressed as strict LMIs, the CCL method is exploited to cast 
them into nonlinear minimization problems subject to LMI constraints, which can be readily solved 
by standard numerical soft ware. A numerical example is given to illustrate the design procedures. 

Problem formulation 
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Consider a n th-order 2D discrete delays system with Markovian jump parameters described 
by the Roesser model:  
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where 1 2n n n= + , 1( , ) nh i j R∈x , 2( , ) nv i j R∈x  represent the horizontal and vertical states 

respectively; ( , ) mi j R∈w  is the disturbance input which is a square-integrable and norm bounded 

stochastic vector function over 2{[0, ),[0, )}L ∞ ∞ ; ( , ) mi j R∈z  is the controlled output; 1d  and 
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In this paper, our purpose is to find a mean-square asymptotically stable n th-order 2D jump 
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is mean-square asymptotically stable and has H∞ performance. 
In this paper, we take the following assumptions. 

Definition 1: The error 2D jump system (3) with , 0i j =w  is said to be mean-square 

asymptotically stable if  

{ }2
,lim E || || 0i ji j+ →∞

=x  

for every boundary condition 0 0( , )X R  satisfying Assumption 1. 

Definition 2: For a given scalar 0γ > , the error 2D jump system (3) is said to be mean-square 
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Lemma 1 Given a symmetric matrix Ω  and two matrices Ψ  and ϒ , consider the problem 
of finding some matrix G  such that 

( ) 0T+ ϒ + ϒ <Ω ΨG ΨG  

Then (4) is solvable for G  if and only if 

0, 0
TT T T⊥ ⊥⊥ ⊥ < ϒ ϒ <Ψ ΩΨ Ω                   (4) 

 

Main results: 
Theorem 3.1. Consider the error system (3) under Assumption 1, for a given a scalar 0γ > , 
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diag{ , }v v v=Q Q Q ，. 
Proof ：Consider system (3), let ( ) 0t =w  and the mode be m  at time t , that is ,i jr m S= ∈ . 

We can see that {( ( , ), ( , )), 0}i j t j t ≥x r  is not a Markov process with initial state ( (0), (0))X R . 
Now, we define a stochastic Lyapunov functional ( )⋅V  as follows: 
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Using Schur complement, the inequality (5) guarantees 0m <Π . Then we have 0J < , which 
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Considering the zero boundary condition, by using this relationship iteratively and performing 

superposition of the two sides of inequalities from 0j =  to 1j k= + , we can get 
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Summing up the two sides of the above inequalities from 0k =  to k s= , we have 
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2 2|| || || ||γ<z w  for all non-zero 2{ } {[0, ),[0, )}ijw w L= ∈ ∞ ∞ , and the proof is concluded.                                                         

Theorem Consider the mean-square asymptotically stable 2D jump system (1). Given a 

constant 0γ > , there exists a reduced n th-order system (2) solves the H∞ model reduction 
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Proof: From Theorem 3.1, we know that there exists a reduced n th-order system (2) such that the 

error system (3) has H∞ performance if there exist positive definite symmetric matrices mP , hQ ， 

vQ ，m S∈  such that (5) holds. It can be seen from (11) that 
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Furthermore, noticing that (12), (5) can be rewritten as 
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It should be noted that the obtained conditions in Theorem 2 are not LMI conditions due to the 
equations in (9). However, with the result of a cone complementarily linearization algorithm, we 
can solve this feasibility problem by formulating it into a linear optimization problem subject to 
LMI constraints.  
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Since the employ the method of alternating projections to solve the 2D jump system H∞ model 
reduction problem can not guarantee global convergence, in this paper, we can use the following 
Algorithm to solve the above nonlinear problem. 

Model reduction algorithm 

For 1 2, , s=X X X X（ , ） with 0m >X  and 1 2 , s=P P P P（ , , ） with 0m >P ，  m S∈ , 

define a convex set by a set of LMIs as 

{( ) LMI(8),LMI(9), 0, 0, for all }d
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It can be seen from Theorem 2, the H∞ reduced order models for 2D jump linear systems (1) 

can be obtained if there exist 1 2, , s=X X X X（ , ） and 1 2( , )s=P P P P, ,  such that 
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is feasible. 
With the above expressions, the following algorithm is proposed to solve the 2D jump system 

H∞ model reduction problem: 
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Step1: Choose the initial values for the matrix pair 0 0( , )P X , the order of the reduced-order n  

and the H∞ norm bound γ ; 

Step2: Define the linear function 
1 1

( , ) ( )
s s

k mn mk n nk m
m n

f p Trace
= =

= +∑∑X P X P P X  

Step3: Find 1 1( , )k k+ +X P  solving the following convex programming: 
,( , )

min { ( , )}
d kf

ξ∈ X PnX P
X P

（ ）

 

Step4: If kf  converges, then exit; otherwise, set 1k k= + ; and go to step 2. 

Step5: Construct a reduced-order model based on (10). 
It can be seen that step 1 is a simple LMI problem, and step 3 is a convex programming with 

LMI constraints. From the explanation in [7], kf  is decreasing and bounded below by 2 ( )s n n+  . 

Once it converges, then (14) is feasible, which implies that the H∞ model reduction problem is 

solvable for a given 0γ > . 

Numerical example 
In this section, we present a numerical example to illustrate the effectiveness of the proposed 

method. It is assumed that the system has two operation modes.  
For mode 1, the system matrices are given by:  

1

0.5 0.01 0.01 0
0 0.6 0 0.01

   
0 0 0.2 0
0 0 0 0.4

 
 
 =
 
 
 

A , 
11

0.01 0
0 0.02
0 0
0 0

d

 
 
 =
 
 
 

A , 
21

0.01 0
0 0.01

0.02 0
0 0.03

d

 
 
 =
 
 
 

A , 

1

1.2 0.4 0.6 0.9
0.4 0.5 0.6 0.1
 

=  
 

C , 11

0.12 0.04
 

0.04 0.05d
 

=  
 

C , 21

0.06 0.09
  

0.06 0.01d
 

=  
 

C , 

[ ]1 0.1 0.7 1.3 0.5 T=B , [ ]1 0.01 0.02 T=D  

For mode 2, the system matrices are given by:  

2

-0.3 0.01 0 0
0 -0.7 0 0.02

0.03 0 0.4 0
0 0 0 -0.4 

 
 
 =
 
 
 

A , 
12

0.01 0.01
0 -0.02
0 0
0 0

d

 
 
 =
 
 
 

A , 
22

0 0
0 0

-0.02 0
0 -0.01

d

 
 
 =
 
 
 

A , 
2

1.1 0.5 0.7 1.9
  

0.1 0.3 0.4 0.4
 

=  
 

C , 

12

0.012 0.004
0.004 0.005d
 

=  
 

C , 
22

0.006 0.009
0.006 0.001d
 

=  
 

C , [ ]2 0.3 0.7 1.2 0.1 T=B , [ ]2 0.2 0.5 T=D  

The modal transfer matrix is given by: 
0.1 0.9

0.55 0.45
 

∏ =  
 

 

Our purpose is to find a (2h,1v) reduced order model. For given 5.8943γ = ， using the CCL 
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algorithm, we solve the matrix inequalities (7-9), for 1, 2m = , let [ ]1 2 11 12==L L L L , where, 

11 5=L I , [ ]12 2 2 0 1
TT =  L I I , we can obtain the solutions as 

1

0.1057 0.1216 0.0002 0.0000 0.0009
0.1216 0.2952 0.0001 0.0003 0.0026

0.0002 0.0001 0.4247 0.0000 0.0023
0.0000  0.0003 0.0000 0.4247 0.0000
0.0009 0.0026 0.0023 0.0000 0.4250

− 
 − − 
 = − −
 − − − 
 − − 

R
, 

2

7.7719 0.0625 0.0001 0.0010 0.0000
0.0625 7.5170 0.0008 0.0001 0.0013
0.0001 0.0008 5.5630 0.0002 0.1084

0.0010 0.0001 0.0002 5.5634 0.0014
0.0000 0.0013 0.1084 0.0014 5.5616

− − 
 − 
 = − −
 − 
 − − 

R
 

Then the (2h,1v) reduced order model can be computed from Theorem 3.2, which is given by 

1

0.5186 0.0285 0.0031
0.0046 0.1051 0.0041
0.0016 0.0001 0.1351

− − 
 =  
 − 

A , 
2

0.2509 0.0249 0.0003
0.7945 0.1477 0.0045   
0.0487 0.0005 0.1659

− − 
 =  
 − 

A , 
11

0.0060 0.0002
0.0128 0.0005

0.0002 0.0003
d

 
 = − 
 − 

A , 

21

0.0626
0.0299

0.1335
d

 
 = − 
  

A , 
21

0.0013 0.0005
0.0045 0.0028
0.0001 0.0016

d

− 
 = − − 
 − 

A , 
22

0.0688
0.0302

0.2063
d

 
 = − 
  

A , 
1

0.0288
0.1075

0.004

− 
 =  
 − 

B , 
2

0.0306
0.1820
0.0010

− 
 =  
 − 

B , 

11

0.1342 0.0000
0.0004 0.1336d

− 
=  
 

C , 1

0.0079 0.0031 0.0004
0.0035 0.0004 0.0005

 
=  − − 

C ,
12

0.0000
 

0.0002d
 

=  − 
C , 

22

0.0001
0.0012d

− 
=  − 

C , 

2

0.0391 0.0009 0.0001
0.0810 0.0016 0.0012

− 
=  − − − 

C , 
12

0.1662 0.0001
0.0008 0.2061d

 
=  − 

C , 
2

0.2064
0.2038
 

=  
 

D , 
1

0.1333
0.1338
 

=  
 

D  

It is assumed the disturbance input ( )tw  is expressed as 0.1( )( , ) e i ji j − +=w . Define the initial 
conditions are (0) [0 0 0]T=x  and (0) 1=r . Simulation results are shown in the following 
figures.  

 
FIG. 1: Trajectories of ( )tr  and ( )tw  

 
FIG. 2: Trajectories of system output of 

original system 

 
FIG. 3: Trajectories of system output of 

reduced system 

 
FIG 4: Error output response of ( )tz  
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Analyzing from Figure 1, we can conclude that the conversion between the two modes is 
randomly and the disturbance input ( )tw  is energy-bounded. Judging from the simulated curve of 
the Figure 2, it can be seen that the error filter system is asymptotic stable for nondeterminacy, and 
the peak gain of the error ( )tz  is no more than the sub-optimum value 1.3938γ = . The 
simulation results imply that the desired goal is well achieved. 

Conclusions  
This paper extends the results obtained for one-dimensional Markovian jump systems to 

investigate the problem of H∞ model reduction for a class for linear discrete time 2D Markovian 
jump systems with state delays in Roesser model which are time-varying and mode-independent. 
The jump parameters are modeled by a finite-state Markov process. A reduced-order model with the 
same randomly jumping parameters is proposed which can make the error systems stochastically 
stable with a prescribed H∞ performance. Then a sufficient condition in terms of linear matrix 
inequalities (LMIs) plus matrix inverse constraints are derived for the existence of a solution to the 
reduced-order model problems. Since these obtained conditions are not expressed as strict LM Is, 
the cone complimentarity linearization (CCL) method is exploited to cast them into nonlinear 
minimization problems subject to LMI constraints, which can be readily solved by standard 
numerical soft ware. A numerical example is given to illustrate the design procedures. 
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