
Journal of applied science and engineering innovation Vol.1 No.6 2014 
ISSN (Print): 2331-9062 
ISSN (Online): 2331-9070 

- 363 - 
 

Nonlinear Uncertain Systems Control Research Based on a Novel SMC 

Method 

Hongyu Gao
a
, Yuan Gao

b 
and Keyong Shao

c 
 

College of Electrical and Information Engineering, Northeast Petroleum University, Daqing, 

Heilongjiang Province 163318,China 
ahongyugao@126.com, b944694178@qq.com, ckeyongshao@tom.com 

Keywords: uncertain; sliding mode; Chattering; Robustness 

 

Abstract. An improved sliding mode controller is designed for a class of nonlinear uncertain 

systems and the sliding mode is proved existing and accessible by theoretical analysis. In addition, a 

method to improve the control precision is proposed after analyzing the stability. The method can 

not only weaken the chattering, but also reduce the difficulty and workload of designing the 

controller. Finally, the simulation results show that the method is correct and effective, and then the 

robustness of the system can be improved. 

Introduction 

In actual control, many systems have strong nonlinear and model objects often have uncertainties, 

Sliding Mode Control (SMC) just provides effective solutions to these problems, SMC has been 

widely used as it has strong robustness to the system with parameter uncertainties and external 

disturbances. Such as in the literature [2], SMC was applied to uncertain systems to realize robust 

control. However, the chattering problem is a big obstacle in the practical application of SMC. In 

order to weaken the chattering phenomenon of SMC, the effective methods were presented by many 

experts and scholars in China and abroad. In the literature [3], the author puts forward the concept 

of boundary layer for a class of nonlinear systems, namely, the normal SMC is used outside the 

boundary layer and the continuous state feedback control is used within the boundary layer, which 

can well weaken the chattering, but at the same time will produce certain steady-state error. To this, 

literature [4] deduces the scope of the steady-state error based on the literature [5,6],and design an 

improved integral type sliding mode surface on the basis of literature [7,8].The effect of this method 

is good when the disturbance is ordinary step signal, but when the disturbance is nonlinear signal, 

the accuracy of the system response is not very ideal. 

In this paper, an improved sliding surface is proposed by introducing the slope of the sliding 

surface. The relationship between the steady-state error of n-order nonlinear uncertain system and 

the slope of sliding surface and the boundary layer thickness was deduced and discussed. On the 

basis, a sliding mode controller is designed. Theoretical analysis and the simulation curves show 

that adopting the improved sliding surface introducing the slope of the sliding surface and the 

controller this paper designed not only the system is controlled effectively but also the chattering is 

eliminated. Comparing with the literature [4],this paper can improve the adjusting time, reduce the 

error and restrain the chattering more effectively, which shows the powerful robustness. 
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System Description 

Consider the following n-order nonlinear uncertain system: 

( )( ) ( ( )) ( ( )) ( ) ( ( ))

( ) ( )

nx t f X t g X t u t d X t

y t x t

   



                                         (1) 

where ( 1)( ) ( ), ( ), , ( )
T

n nX t x t x t x t R     is the state of the system, ( )x t R ; ( ) mu t R is the 

control, ( ( ))g X t is the control gain, invertible; ( ( ))f X t is the nonlinear uncertain bounded 

function, ( ( ))d X t is the unknown bounded disturbance. 

Let 

( ( )) ( ( )) ( ( ))f X t f X t f X t 
                                                  (2) 

Where ( ( ))f X t is the estimate function of ( ( ))f X t , ( ( ))f X t is the uncertain item of the system, 

then we have 

( ( )) ( )f X t F X 
                                                            (3) 

( ( )) ( )d X t D X
                                                             (4) 

Where ( )F X and ( )D X are the upper bound functions of ( ( ))f X t and ( ( ))d X t , respectively. We 

want to show in this paper that the output of the system ( )y t can track the reference input 

signal ( )rx t ,and the system can have good steady performance in the presence of nonlinear 

uncertain ( ( ))f X t and external disturbance. Here, ( )rx t R is continuous differentiable. 

Define the tracking error 1( ) ( ) ( ) ( ) ( )r re t y t x t x t x t    ,then we have the error vector is 

 1 2( ) ( ), ( ), , ( )T

ne t e t e t e t  = ( 1)

1 1 1( ), ( ), , ( )ne t e t e t     

    = ( 1) ( 1)( ) ( ), ( ) ( ), , ( ) ( )n n

r r rx t x t x t x t x t x t        nR                             (5) 

The Sliding Mode Controller Design 

To reduce the steady-state error, the slope of the sliding surface   is introduced to the 

traditional sliding mode surface and form the sliding surface below  

1

1

( )
n

i i n

i

S t c e e




                                                              (6) 
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Where 0  is the slope of the sliding surface, constant
1 2 1, , , nc c c  are selected to make 

1 2

1 2 1

n n

np c p c p c 

     Hurwitz stability, p  is Laplace operator. 

 

Theorem 1. Consider the sliding surface given by (6) of the system described by (1),if the 

control signal is 

1
1 ( )

1

1

( ) ( ( )) ( ( )) ( ) ( ) sgn( ( ))
n

n

i i r

i

u t g X t c e f X t x t M X S t








 
      

 
                       (7) 

Then sliding mode exists and it is accessible. Where  )()()( XDXFXM , 0 . 

Proof: Taking the time derivative of (6) to obtain 

1

1

1

( )
n

i i n

i

S t c e e






  
1

( ) ( )

1

1

( ) ( )
n

n n

i i r

i

c e x t x t






    

   
1

( )

1

1

( ( )) ( ( )) ( ) ( ( )) ( )
n

n

i i r

i

c e f X t g X t u t d X t x t






                                 (8) 

Let 0)( tS ,we obtain an equivalent controller )(tueq ,that is 

1
1 ( )

1

1

( ) ( ( )) ( ( )) ( ( )) ( )
n

n

eq i i r

i

u t g X t c e f X t d X t x t








 
     

 
  

     
1

1 ( )

1

1

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( )
n

n

i i r

i

g X t c e f X t f X t d X t x t








 
      

 
                    (9) 

Control signal such as (7) is given based on (9),then we have 

 ( ) ( ) ( ) ( ( )) ( ( )) ( ) sgn( ( ))S t S t S t f X t d X t M X S t       

        ( ) ( ( ) ) ( ( ) ) ( ) ( )S t f X t d X t M X S t         

         ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( )S t f X t d X t F X D X S t        ( )S t  <0 

Therefore, theorem 1 has been proved. 

Saturation function is adopted to instead of sign function to eliminate the chattering,the 

saturation function is defined as 

 
( ) , ( )

( )
sgn( ( )), ( )

S t S t
sat S t

S t S t

 




 
 


                                              (10) 

Then 

1
1 ( )

1

1

( ) ( ( )) ( ( )) ( ) ( ) ( ( ) )
n

n

i i r

i

u t g X t c e f X t x t M X sat S t 








 
      

 
                    (11) 

http://dict.youdao.com/w/laplace_operator/
http://dict.youdao.com/w/saturation/
http://dict.youdao.com/w/function/
http://dict.youdao.com/w/saturation/
http://dict.youdao.com/w/function/
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where  is the boundary layer thickness. 

The situation of the steady-state error when the system state converge to the internal boundary 

layer with the center of the sliding mode surface will be discussed in the following. 

The Steady-state Error Analysis 

Theorem 2. Consider the sliding surface given by (6) of the system described by 

(1),when ( ( ))W X t is constant or constant in the end, namely, when lim ( ( ))
t

W X t l


 (l is constant),then 

we have 

1lim ( ) ( )
t

e t l c 


                                                            (12) 

Where, ( ( )) ( ( )) ( ( ))W X t f X t d X t   , ( )M X  . 

Proof: The track of system (1) within the boundary layer ( )S t   

1

1

1

( )
n

i i n

i

S t c e e






    ( ( )) ( ( )) ( ) ( )f X t d X t M X S t       

   ( ( ) ) ( )W X t S t                                                          (13) 

Take Laplace transform of (13), we obtain 

( ) ( ) ( )S s W s s                                                             (14) 

In the literature [4],we know when ( ( ))W X t is constant or constant in the end, lim ( ( ))
t

W X t l


 ( l  

is constant),then we have 

0
lim ( ) lim ( )
t s

S t s S s l 
 

                                                        (15) 

And according to 1( ) ( ) ( )re t x t x t  defined before, as the steady-state error is required, the 

influence of the initial state of the system can be neglected,(6) is expand into 

 1 1 2 2 1 1( ) ( ) ( ) ( ) ( )n n nS t c e t c e t c e t e t        

    ( 2 ) ( 1 )

1 1 2 1 1 1 1( ) ( ) ( ) ( )n n

nc e t c e t c e t e t  


                                        (16) 

Take Laplace transform of (16),we obtain 

2 1

1 2 1 1( ) ( ) ( )n n

nS s c c s c s s e s  

      

Therefore, 2 1

1 1 2 1( ) ( ) ( )n n

ne s S s c c s c s s  


        

According to the final value theorem, we get 

 

http://dict.youdao.com/w/boundary/
http://dict.youdao.com/w/layer/
http://dict.youdao.com/w/thickness/
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1 1
0

lim ( ) lim ( )
t s

e t s e s
 

  2 1

1 2 1
0

lim1 ( ) ( )n n

n
s

c c s c s s l  




        1( )l c   

 

Therefore, theorem 2 has been proved. 

In the following we analyze it, through 1( )l c   1 ( )l c M X   ,we know that the 

steady-state error of the system is inversely proportional to slope of the sliding surface and 

proportional to the boundary layer thickness  .The smaller is, the smaller the steady-state error is 

so that the control effect is better, however, the chattering is increased; If is very large, which will 

weaken the advantage of powerful robustness of the sliding mode control, thus it can be seen that 

adjusting the value of  and  can enhance the control effect but the adjustment process is 

troublesome, so according to the analysis and derivation before, we can achieve an good control 

effect by an easy method, namely, after the value of and is initially identified, the constant 

coefficient 1c can be adjusted, which can reduce the steady-state error further, enhance the robustness 

of the system and improve its steady-state performance. 

Simulation Examples 

Consider the n-order system described in (1), take the following 2-order system in which n=2 as 

an example: 

( ) ( ( )) ( ( )) ( ( )) ( ) ( ( ))

( ) ( )

x t f X t f X t g X t u t d X t

y t x t

    





 

Where assume that 2( ( ))f X t x , ( ( )) cos( )f X t t  , ( ( )) 2sin( )d X t t , tracking reference 

input ( ) sin( )rx t t . 

The improved sliding surface given by (6) and the designed controller given by (7) is adopted, let 

10  , ( ) 1F X  , ( ) 10D X  , therefore, ( ) 21M X  ,according to the above analysis, the following 

simulation of several cases.  

Case 1: when the value of   is large such as when 0.2  ,the simulation result is shown in 

Fig.1,which the error is large and the chattering exists. 

Case 2:when the value of   is small such as when 0.05  ,the simulation result is shown in 

Fig.2,which the error is small but the chattering increases. 

Case 3:when 0.02  , 3  , 
1 5c  ,the simulation result is shown in Fig.3, the error is reduced 

further and the chattering is weakened at the same time. 

http://dict.youdao.com/w/simulation/
http://dict.youdao.com/w/example/
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Case 4:when 0.02  , 1  , 1 10c  ,the simulation result is shown in Fig.4,not only the error is 

reduced, but also the chattering is eliminated. 

Fig.5 is the curve that the output tracks the reference input signal in this case. “--” is the 

reference input signal, “-” is the output signal. 

Through the five figures, it can be seen that they completely accords with the steady-state error 

analysis conclusion that before describes. Synthesizing the above situations and comparing with the 

literature [4],the response speed is improved, the adjusting time and steady-state error are reduced 

and the chattering is restrained more effectively, which shows the powerful robustness. 

 
Fig.1 The error curve in case 1        Fig.2  The error curve in case 2 

 
Fig.3 The error curve in case 3        Fig.4 The error curve in case 4 

 
Fig.5 The output tracking error curve in case 4 

 

6 Conclusion 

In this paper, an improved sliding surface is proposed by introducing the slope of the sliding 

surface .On the basis; a sliding mode controller is designed. The above proposed method is 

http://dict.youdao.com/w/curve/
http://dict.youdao.com/w/error/
http://dict.youdao.com/w/curve/
http://dict.youdao.com/w/error/
http://dict.youdao.com/w/curve/
http://dict.youdao.com/w/error/
http://dict.youdao.com/w/curve/
http://dict.youdao.com/w/error/
http://dict.youdao.com/w/curve/
http://dict.youdao.com/w/error/
http://dict.youdao.com/w/curve/
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feasible by theoretical analysis. Then, the steady-state error is discussed for a class of n-order 

nonlinear uncertain systems. The slope of sliding surface   and the boundary layer thickness   

have bind effects mutually, so they are not easy to adjust. The analysis and simulation show that the 

method in this paper can adjust appropriately constant coefficient 1c to realize the effective control of 

the system under the situation of the certain value of and .Comparing with the literature [4],this 

paper can improve the response speed and adjusting time, reduce the error further and restrain the 

chattering more effectively, which shows the powerful robustness and at the same time reduces the 

workload of adjusting value of and ,which is easy for the project realization. 
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